350 research outputs found

    A language for dealing with emotions in product innovation: a proposal

    Get PDF
    The knowledge of emotions is essential in all designs created for the customer (e.g. product design, service design, graphic design, food design). The complexity of designing a product-service system to provoke intended emotions involves the need to formulate a shareable, natural, and unambiguous language has emerged. This paper presents a language proposal to discuss emotions in product innovation, which is composed of three key concepts: the human-product emotional interactions, a framework of positive emotions and the emotional-jobs-to-be-done by a product. An exploratory survey with an international community of designers has been implemented in order to review the acceptance and understanding of this framework; the results of the exploratory survey have been the basis of the final refinement of the proposed language, which consists of 1) three categories of human-product emotional interaction, 2) 19 positive emotion types, and 3) 19 emotional jobs-to-done

    Emotional design: the development of a process to envision emotion-centric new product ideas

    Get PDF
    There is ample evidence, in many sectors, of the crucial importance of the emotional experiences in the interaction between users and products. Generating products with richer and significant emotional features is a complex challenge. In order to better face this challenge, professionals responsible for designing and developing new products could be facilitated with techniques and tools to understand emotions and to convey specific emotions in the new products. This paper presents the development of a process to support product design teams to envision emotion-focused new product ideas - Emotion-Driven Innovation (E-DI). We have adopted the process research methodology proposed by Platts, which encompasses four main steps: 1) state-of-the-art review, 2) process creation, 3) process development, and 4) process validation. This paper presents the results of the three first steps. The state-of-the-art literature review has been the foundation of the process creation step, which resulted in a three-phase workshop-based process: Emotion Knowledge Acquisition, Emotion Goal Definition, and Idea Generation. In the third step of the research methodology, the feasibility, usability, and utility have been tested through four studies which have involved master design students from Portugal and Italy. The results of these four tests show that Emotion-Driven Innovation process supports designers 1) to identify the occurrence of emotions in certain category of products present in the market, 2) to apply this information to make strategic decisions when defining the emotional intentions for the new product, and 3) to focus their creative thinking to develop strong and meaningful emotion-centric ideas

    Evidence from stellar rotation of enhanced disc dispersal: (I) The case of the triple visual system BD-21 1074 in the β\beta Pictoris association

    Full text link
    The early stage of stellar evolution is characterized by a star-disc locking mechanism. The disc-locking prevents the star to spin its rotation up, and its timescale depends on the disc lifetime. Some mechanisms can significantly shorten this lifetime, allowing a few stars to start spinning up much earlier than other stars. In the present study, we aim to investigate how the properties of the circumstellar environment can shorten the disc lifetime. We have identified a few multiple stellar systems, composed of stars with similar masses, which belong to associations with a known age. Since all parameters that are responsible for the rotational evolution, with the exception of environment properties and initial stellar rotation, are similar for all components, we expect that significant differences among the rotation periods can only arise from differences in the disc lifetimes. A photometric timeseries allowed us to measure the rotation periods of each component, while high-resolution spectra provided us with the fundamental parameters, vsiniv\sin{i} and chromospheric line fluxes. The rotation periods of the components differ significantly, and the component B, which has a closer companion C, rotates faster than the more distant and isolated component A. We can ascribe the rotation period difference to either different initial rotation periods or different disc-locking phases arising from the presence of the close companion C. In the specific case of BD-21 1074, the second scenario seems to be more favored. In our hypothesis of different disc-locking phase, any planet orbiting this star is likely formed very rapidly owing to a gravitational instability mechanism, rather than core accretion. Only a large difference of initial rotation periods alone could account for the observed period difference, leaving comparable disc lifetimes.Comment: Accepted by Astronomy & Astrophysics on July 31, 2014; Pages 12, Figs.

    Elemental abundances of low-mass stars in nearby young associations: AB Doradus, Carina Near, and Ursa Major

    Full text link
    We present stellar parameters and abundances of 11 elements (Li, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, and Zn) of 13 F6-K2 main-sequence stars in the young groups AB Doradus, Carina Near, and Ursa Major. The exoplanet-host star \iota Horologii is also analysed. The three young associations have lithium abundance consistent with their age. All other elements show solar abundances. The three groups are characterised by a small scatter in all abundances, with mean [Fe/H] values of 0.10 (\sigma=0.03), 0.08 (\sigma=0.05), and 0.01 (\sigma=0.03) dex for AB Doradus, Carina Near, and Ursa Major, respectively. The distribution of elemental abundances appears congruent with the chemical pattern of the Galactic thin disc in the solar vicinity, as found for other young groups. This means that the metallicity distribution of nearby young stars, targets of direct-imaging planet-search surveys, is different from that of old, field solar-type stars, i.e. the typical targets of radial velocity surveys. The young planet-host star \iota Horologii shows a lithium abundance lower than that found for the young association members. It is found to have a slightly super-solar iron abundance ([Fe/H]=0.16+-0.09), while all [X/Fe] ratios are similar to the solar values. Its elemental abundances are close to those of the Hyades cluster derived from the literature, which seems to reinforce the idea of a possible common origin with the primordial cluster.Comment: 16 pages, 2 figures, 6 tables. Accepted for publication in MNRA

    X-Shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership and activity diagnostics

    Get PDF
    A homogeneous determination of basic stellar parameters of young stellar object (YSO) candidates is needed to confirm their evolutionary stage, membership to star forming regions (SFRs), and to get reliable values of the quantities related to chromospheric activity and accretion. We used the code ROTFIT and synthetic BT-Settl spectra for the determination of the atmospheric parameters (Teff and logg), the veiling, the radial (RV) and projected rotational velocity (vsini), from X-Shooter spectra of 102 YSO candidates in the Lupus SFR. We have shown that 13 candidates can be rejected as Lupus members based on their discrepant RV with respect to Lupus and/or the very low logg values. At least 11 of them are background giants. The spectral subtraction of inactive templates enabled us to measure the line fluxes for several diagnostics of both chromospheric activity and accretion. We found that all Class-III sources have Hα\alpha fluxes compatible with a pure chromospheric activity, while objects with disks lie mostly above the boundary between chromospheres and accretion. YSOs with transitional disks displays both high and low Hα\alpha fluxes. We found that the line fluxes per unit surface are tightly correlated with the accretion luminosity (LaccL_{\rm acc}) derived from the Balmer continuum excess. This rules out that the relationships between LaccL_{\rm acc} and line luminosities found in previous works are simply due to calibration effects. We also found that the CaII-IRT flux ratio, F8542/F8498F_{8542}/F_{8498}, is always small, indicating an optically thick emission source. The latter can be identified with the accretion shock near the stellar photosphere. The Balmer decrement reaches instead, for several accretors, high values typical of optically thin emission, suggesting that the Balmer emission originates in different parts of the accretion funnels with a smaller optical depth.Comment: 28 pages, 26 figures, accepted by A&

    Connection between jets, winds and accretion in T Tauri stars: the X-shooter view

    Get PDF
    We have analysed the [OI]6300 A line in a sample of 131 young stars with discs in the Lupus, Chamaeleon and signa Orionis star forming regions, observed with the X-shooter spectrograph at VLT. The stars have mass accretion rates spanning from 10^{-12} to 10^{-7} Mo/yr. The line profile was deconvolved into a low velocity component (LVC, 40 km/s ), originating from slow winds and high velocity jets, respectively. The LVC is by far the most frequent component, with a detection rate of 77%, while only 30% of sources have a HVC. The [OI]6300 luminosity of both the LVC and HVC, when detected, correlates with stellar and accretion parameters of the central sources (i.e. Lstar , Mstar , Lacc , Macc), with similar slopes for the two components. The line luminosity correlates better with the accretion luminosity than with the stellar luminosity or stellar mass. We suggest that accretion is the main drivers for the line excitation and that MHD disc-winds are at the origin of both components. In the sub-sample of Lupus sources observed with ALMA a relationship is found between the HVC peak velocity and the outer disc inclination angle, as expected if the HVC traces jets ejected perpendicularly to the disc plane. Mass loss rates measured from the HVC span from ~ 10^{-13} to ~10^{-7} Mo/yr. The corresponding Mloss/Macc ratio ranges from ~0.01 to ~0.5, with an average value of 0.07. However, considering the upper limits on the HVC, we infer a ratio < 0.03 in more than 40% of sources. We argue that most of these sources might lack the physical conditions needed for an efficient magneto-centrifugal acceleration in the star-disc interaction region. Systematic observations of populations of younger stars, that is, class 0/I, are needed to explore how the frequency and role of jets evolve during the pre-main sequence phase.Comment: 15 pages, 14 figures, Accepted for publication in A&
    corecore